光纤布拉格光栅及其构成的法布里-珀罗腔的 相位谱特性研究

牛嗣亮饶伟姜暖胡永明

(国防科学技术大学光电科学与工程学院,湖南长沙 410073)

摘要 光纤光栅的相位谱对光纤光栅法布里-珀罗(F-P)腔的光谱特性有重要影响。对光纤布拉格光栅(FBG)光 谱,特别是 FBG 相位谱进行了深入分析,推导了低反射率 FBG 的线性相位谱的一般表达式,提出了高反射率 FBG 的三段线性相位近似方法,得到了简洁直观的相位谱数学表达式。然后采用和普通 F-P 腔对比的方式,以等效腔 长的概念分析了 FBG 构成的 F-P(FBG-FP)腔相位谱特性,并讨论了拟合法、周期法和傅里叶变换法这 3 种常用的 FBG-FP 腔长估计算法。设计了 FBG-FP 腔光谱测量方案,得到了高精度的光谱曲线,对比分析了前述 3 种腔长估 计方法的计算结果,验证了理论分析的正确性。

关键词 光纤光学;光纤布拉格光栅;法布里-珀罗腔;相位谱;腔长估计 中图分类号 TN253 **文献标识码** A **doi**: 10.3788/AOS201131.0806007

Investigation on Phase Spectra of Fiber Bragg Gratings and the Constructed Fabry-Pérot Cavity

Niu Siliang Rao Wei Jiang Nuan Hu Yongming

(College of Opotelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China)

Abstract Phase spectrum of fiber Bragg grating (FBG) has a major effect on spectral characteristics of the constructed Fabry-Pérot (F-P) cavity. By the analysis of spectral characteristics of an FBG, especially its phase spectrum, the linear phase spectrum of a weak grating is derived. Furthermore, the three-segment linear approximation is proposed for strong gratings with a concise expression. Then, based on the deduced analytic expressions of phase spectra, spectral characteristics of FBG based Fabry-Pérot (FBG-FP) cavities are investigated by the conception of effective cavity in comparison with general F-P cavities. The fitting method, periodic method and Fourier transform method for FBG-FP cavity length estimation are discussed. A scheme of spectral measurement of FBG-FP cavities is designed, which obtains spectral curves with a high accuracy. The above three methods for cavity length estimation are compared mutually with tested spectra, and theoretical analyses are validated.

Key words fiber optics; fiber Bragg grating; Fabry-Pérot cavity; phase spectrum; cavity-length estimation OCIS codes 060.2370; 060.3735; 050.2230; 050.2770; 120.2230; 070.4790; 140.4780

1 引 言

光纤布拉格光栅(FBG)和光纤法布里-珀罗(F-P)腔有着优异的传感特性,在光纤传感和光纤通信 领域有着广泛的应用^[1~4]。由一对 FBG 作为反射 镜可以构成本征型 F-P 腔,相对于非本征型的耗散 式短腔,这种结构有更高的灵敏度^[5,6]。基于 FBG 的 F-P(FBG-FP)腔作为一种谐振腔具有优良的滤 波特性,可用作激光器谐振腔和选频器^[7]。FBG-FP 腔作为一种多光束干涉仪,具有波长编码和便于波 分复用等优点,可以解决 FBG 在应用中灵敏度不

作者简介:牛嗣亮(1981一),男,博士研究生,主要从事光纤传感、信号处理等方面的研究。

E-mail: liusiliang12345@yahoo.com.cn

导师简介:胡永明(1960-),男,教授,博士生导师,主要从事光纤传感技术等方面的研究。 E-mail: huyongming_nudt@hotmail.com

收稿日期: 2011-02-18; 收到修改稿日期: 2011-05-13

高^[8]及温度、应力交叉敏感问题^[9]。这种紧凑结构 可以极大地减少耦合器、熔接点和其他连接,简化传 感结构,大大提高系统的复用数目。FBG-FP 腔不 但在振动^[10]、准静态应力^[6]和温度^[11,12]等传感方面 具有较好的探测性能,而且在大型工程建筑的状态 监测方面还可以实现多参量同时测量^[13]。

FBG-FP 腔的传感性能取决于其优良的光谱特 性。FBG-FP 腔由两部分构成:FBG 和腔中光纤。 FBG-FP 腔与普通 F-P 腔的不同之处在于其只在 FBG 带宽内反射,并且由于 FBG 相位谱的影响使 其有更丰富的谐振条纹。吕昌贵等^[7]从FBG 相位 谱角度对 FBG-FP 腔的纵模特性进行了分析。李文 博等[14] 把组成 F-P 腔的两个 FBG 的初始相位纳入 了讨论范围。通常 FBG 的相位谱表示为反正切函 数形式,目前还没有人对其进行简化得到更清晰直 观的定量描述,因此 FBG 和 FBG-FP 腔的相位谱特 性有待进一步研究。F-P 腔中光纤长度决定了其光 谱谐振模式。FBG-FP 腔长测量与基于光谱分析的 准静态参量解调的实验方法基本相同[15],也是搭建 匹配干涉仪实现动态信号解调的关键^[10]。因此, FBG 相位谱和 FBG-FP 腔长测量方法的研究对 FBG-FP 腔的理论分析和工程应用都有重要意义。

本文首先分析 FBG 的光谱特性,推导 FBG 相 位谱简洁的数学表达式。然后采用和普通 F-P 腔 对比的方式,以等效腔长概念分析了 FBG-FP 腔的 光谱特性,并讨论了 3 种腔长测量方法。最后,设计 了 FBG-FP 腔光谱测量方案,分析了实测光谱曲线。

2 FBG 理论

光纤 FBG-FP 腔与普通 F-P 腔的不同之处在于 其只在 FBG 带宽内反射,并且由于 FBG 相位谱的 影响使其有更丰富的谐振条纹。因此,要分析 FBG-FP 腔的光谱特性,首先要分析 FBG 的光谱特别是 相位谱特性。

2.1 FBG 的强度谱

值反射率为

单模光纤 FBG 的反射强度谱可以表示为[1]

$$R = \frac{\sinh^2(\sqrt{\kappa^2 - \sigma^2}L)}{\cosh^2(\sqrt{\kappa^2 - \sigma^2}L) - \sigma^2/\kappa^2},$$
 (1)

交流耦合系数 $\kappa = \frac{\pi}{\lambda} \Delta n$,失谐波数 $\sigma = 2\pi n (1/\lambda - 1/\lambda_B)$ 。其中 $L, \Delta n, n$ 和 λ_B 分别为 FBG 的长度、折射率调制深度、有效折射率和中心波长。当 $\sigma = 0$ 时,峰

$$R_{\max} = \tanh^2(\kappa_0 L), \qquad (2)$$

式中 $\kappa_0 = \pi \Delta n / \lambda_B$ 。当 $\sqrt{\kappa^2 - \sigma^2} L = \pm i k \pi (k = 1, 2, 3, \dots)$ 时,反射率为0,各阶零点波长表示为

$$\frac{1}{\lambda_{\pm k}} = \frac{1}{\lambda_{\rm B}} \mp \frac{1}{2n} \sqrt{\left(\frac{k}{L}\right)^2 + \left(\frac{\Delta n}{\lambda_{\rm B}}\right)^2}.$$
 (3)

特别的,可以得到 FBG 的零点带宽 Δλ₀ 为

$$\frac{\Delta\lambda_{\rm o}}{\lambda_{\rm B}} = \frac{\Delta n}{n} \sqrt{1 + \left(\frac{\lambda_{\rm B}}{\Delta nL}\right)^2}.$$
 (4)

当 $\sqrt{\kappa^2 - \sigma^2} = 0$ 时,可得 $\lambda_{\pm \text{band}} = \lambda_{\text{B}} [1 \pm \Delta n / (2n)]$, 以下简称"边带波长"。

2.2 FBG 的相位谱

光纤光栅的反射相位谱 φ_r(λ)表示为^[7]

$$\phi_{\rm r}(\lambda) = \begin{cases} \pi + \arctan\left[-\frac{\sqrt{\kappa^2 - \sigma^2}\cosh(\sqrt{\kappa^2 - \sigma^2}L)}{\sigma\sinh(\sqrt{\kappa^2 - \sigma^2}L)}\right],\\ \lambda \leqslant \lambda_{\rm B}\\ \arctan\left[-\frac{\sqrt{\kappa^2 - \sigma^2}\cosh(\sqrt{\kappa^2 - \sigma^2}L)}{\sigma\sinh(\sqrt{\kappa^2 - \sigma^2}L)}\right],\\ \lambda > \lambda_{\rm B} \end{cases}$$
(5)

在零 点 带 宽 内, 反 射 相 位 谱 从 $3\pi/2$ 单 调 减 小 到 $-\pi/2$, 且 $\phi_r(\lambda_B) = \pi/2$ 。

仿真分析了 FBG 峰值反射率 R_{max} 分别为 10%, 40%和 90%时反射相位谱在零点带宽内的变化,FBG 参数为:中心波长 $\lambda_B = 1550 \text{ nm}$,零点带宽 $\Delta \lambda_0 =$ 0.2 nm,有效折射率 n=1.456。结果如图 1 所示,其 中实线为 FBG 反射相位谱,虚线为归一化反射强度 谱。可以看到,当 $R_{max} = 10\%$ 时,为线性相位谱;当 $R_{max} = 40\%$ 时,相位谱线性程度仍然很好;随着峰值 反射率的增大,当 $R_{max} = 90\%$ 时,相位谱的非线性退 化严重。由于光栅强度对相位谱的线性程度影响较 大,下面对低反射率和高反射率 FBG 分别讨论。

- 图 1 不同峰值反射率的 FBG 反射相位谱和归一化反射 强度谱
- Fig. 1 Reflection phase spectra of FBG with different maximum reflectivities and normalized reflection intensity spectrum

2.2.1 低反射率 FBG

分析 FBG 在零点带宽波长区间[$\lambda_{-1}, \lambda_{+1}$]的反 射相位谱。当 $\lambda \in [\lambda_{-1}, \lambda_{-band}) \cup (\lambda_{+band}, \lambda_{+1}]$ 时,可 认为 $\kappa^2 \ll \sigma^2$ 。由(4)式可知,边带波长宽度 $\Delta \lambda_{band} =$ $\lambda_B \Delta n/n$,对于弱反射率光纤光栅($\Delta n \leqslant 1$),有 ($\Delta \lambda_{band}/\Delta \lambda_0$)→0。因此,在零点带宽内近似得到 $\kappa^2 \ll$ $\sigma^2, \sqrt{\kappa^2 - \sigma^2} L \approx i |\sigma| L_o$ 那么,FBG 的反射相位谱为

$$\phi_{\rm r}(\lambda) = \arctan \frac{|\sigma| \cos(|\sigma|L)}{-\sigma \sin(|\sigma|L)}.$$
 (6)

当 $\lambda_{-1} \leq \lambda < \lambda_B$ 时, $\sigma > 0$,FBG的反射相位谱为

$$\phi_{\rm r}(\lambda) \approx \frac{\pi}{2} + \frac{2\pi nL}{\lambda_{\rm B}^2} (\lambda_{\rm B} - \lambda).$$
 (7)

当 $\lambda_B < \lambda \leq \lambda_{+1}$ 时, $\sigma < 0$,结果与(7)式相同。此外, $\phi_r(\lambda_B) = \pi/2$ 。由(4)式可得 $\Delta \lambda_0 = \lambda_B^2/(nL)$ 。因此, FBG反射相位谱在零点带宽内有如下线性表示:

$$\phi_{\rm r}(\lambda) = \frac{\pi}{2} + \frac{2\pi}{\Delta\lambda_0} (\lambda_{\rm B} - \lambda). \tag{8}$$

对于相邻高阶零点的区间,由于总能满足 $\kappa^2 \ll \sigma^2$,由 (3)式可知,其区间长度约为 $\Delta \lambda_0/2$,可得低反射率 FBG 反射相位谱的线性表达式为

$$\phi_{\rm r}(\lambda) = \frac{\pi}{2} - \frac{2\pi}{\Delta\lambda_0} (\lambda - \lambda_{\rm B}) \mp k\pi,$$
$$\frac{k\Delta\lambda_0}{2} \leqslant |\lambda - \lambda_{\rm B}| < (k+1)\frac{\Delta\lambda_0}{2},$$
$$k = 0, 1, 2, \cdots.$$
(9)

当 $\lambda < \lambda_B$ 时,(9)式取负号。(9)式的不连续点对应反射强度谱的零点波长。

2.2.2 高反射率 FBG

由图 1 可以看到,高反射率 FBG 的相位谱非线 性退化显著,但中心波长附近相位谱线性较好,因此 考虑分段线性近似方法。对于偏离中心波长小位移 $\lambda_{\rm B} + \Delta \lambda (\Delta \lambda = s \lambda_{\rm B}, 0 < s \ll 1)$ 处的反射相位正切值可 以表示为

$$\tan[\phi_{\rm r}(\lambda_{\rm B}+\Delta\lambda)]\approx\frac{\Delta n}{2ns}\coth(\kappa_0 L). \quad (10)$$

用 $(\lambda_{\rm B}, \pi/2)$ 和 $[\lambda_{\rm B} + \Delta \lambda, \phi_{\rm r}(\lambda_{\rm B} + \Delta \lambda)]$ 计算中心波长 处的线性相位谱斜率,可得

$$K_{1} = -\arctan\left[\frac{2ns}{\Delta n}\tanh(\kappa_{0}L)\right] / (\mathfrak{A}_{B}). \quad (11)$$

另外,边带波长 λ_{+band} 处的反射相位为 $\phi(\lambda_{+band}) = \pi/2 - \arctan(\kappa_0 L)_{\circ}(\lambda_B, \pi/2) \pi(\lambda_{+band}, \phi_r(\lambda_{+band}))$ 两 点直线的斜率可以表示为

$$K_2 = -\frac{\arctan(\kappa_0 L)}{(\Delta n/2n)\lambda_{\rm B}}.$$
 (12)

因此,用 $[\lambda_{-band}, \phi_r(\lambda_{-band})]$ 和 $[\lambda_{+band}, \phi_r(\lambda_{+band})]$ 两点 直线近似中心波长附近的相位谱问题就可以表示为 如下数值近似:

$$\frac{K_1}{K_2} = \arctan\left[\frac{2ns}{\Delta n} \tanh(\kappa_0 L)\right] / \left[\frac{2ns}{\Delta n} \arctan(\kappa_0 L)\right].$$
(13)

显然,随着 FBG 反射率减小, $K_1/K_2 \rightarrow 1$ 。

利用数值仿真,改变 FBG 的峰值反射率,计算 中心波长附近相位谱斜率 K₁ 和线性近似相位谱斜 率 K₂ 及其比值的对比曲线如图 2 所示。可以看 出,当反射率小于 35%时,近似误差小于 1%;当反 射率小于 85%时,近似误差小于 10%;然后,随着反 射率的增大,误差急剧增大。

图 2 相位谱与其线性近似在中心波长处斜率的对比曲线

Fig. 2 Comparison of evolutions of the slope between the phase spectrum near central wavelength and the corresponding linear approximation

考虑到边带波长带宽 $\frac{\Delta\lambda_{\text{band}}}{\Delta\lambda_0} = 1 \left/ \sqrt{1 + \left(\frac{\pi}{\kappa_0 L}\right)^2} \right)^2$ 。

当 FBG 反射率增大时, $[\lambda_{-1}, \lambda_{-band}]$ 和 $[\lambda_{+band}, \lambda_{+1}]$ 的间隔变小, 两区间的端点直线斜率增大, 与高反射率 FBG 相位谱的非线性退化趋势一致。此外, 在应用 FBG 时, 应多利用中心波长处的光谱特性。因此, 对零点带宽内反射相位谱采用三段线性近似方法, 可以得到简洁直观的相位谱表达式, 便于传感及其他应用的理论研究。此外, 对于相邻高阶零点区间的相位谱, 由于总能满足 $\kappa^2 \ll \sigma^2$, 相位谱为线性, 分析(9)式相同。对于实际的 FBG 曲线, 三段线性近似相位曲线可以由下面的方法计算:

 测量 FBG 反射强度谱,从而得到光栅的峰 值反射率 R_{max}、中心波长 λ_B 和零点带宽 Δλ₀;

2)由(2)式计算光栅强度 $\kappa_0 L$,由中心波长计算 边带波长 $\lambda_{\pm \text{band}}$,由 $\phi(\lambda_{\pm \text{band}}) = \pi/2 \mp \arctan(\kappa_0 L)$ 得 到边带波长处的相位;

3) 分 $[\lambda_{-1}, \lambda_{-band}), [\lambda_{-band}, \lambda_{+band}]$ 和 $(\lambda_{+band}, \lambda_{+1}]$ 3 个区间,计算线性相位谱。三段线性近似相位谱为

$$\phi_{r}(\lambda) = \begin{cases} \frac{3\pi}{2} + \frac{\pi - \arctan(\kappa_{0}L)}{\frac{\Delta\lambda_{0}}{2} - \frac{\Delta n}{2n}} \lambda_{B} & (\lambda_{-1} - \lambda), \\ \frac{\Delta\lambda_{0}}{2} - \frac{\Delta n}{2n} \lambda_{B} & \lambda \in [\lambda_{-1}, \lambda_{-band}) \\ \lambda \in [\lambda_{-1}, \lambda_{-band}) & (\lambda_{-1} - \lambda), \\ \lambda \in [\lambda_{-band}, \lambda_{+band}] & (\lambda_{-1} - \lambda), \\ \lambda \in [\lambda_{-band}, \lambda_{+band}] & (\lambda_{+1} - \lambda), \\ \frac{\Delta\lambda_{0}}{2} - \frac{\Delta n}{2n} \lambda_{B} & \lambda \in (\lambda_{+band}, \lambda_{+1}] \end{cases}$$

式中 $eta=2\pi n/\lambda$, $eta_{ ext{ iny 0}}=2\pi n/\lambda_{ ext{ iny B}}$ 。

数值仿真分析峰值反射率 $R_{max} = 90\%$ 时的 FBG 三段线性相位谱近似程度,如图 3 所示。可以 看到分段线性近似的曲线与相位谱基本重合,近似 程度很高。

图 3 三段线性近似相位谱 Fig. 3 Phase spectrum with three-segment linear approximation

3 FBG-FP 腔的理论

由一对 FBG 构成 F-P 腔的结构如图 4 所示,其 中 L_1 , L_2 和h 分别为两个 FBG 的长度和 F-P 腔长。

图 4 FBG-FP 腔结构示意图

Fig. 4 Schematic diagram of an FBG based F-P cavity FBG-FP 腔的反射复振幅可以表示为^[16]

$$r_{\rm FP} = r_1 + \frac{t'_1 t_1 r_2 \exp(j2\beta h)}{1 - r'_1 r_2 \exp(j2\beta h)}, \qquad (15)$$

式中 r_1 , r'_1 , t_1 和 t'_1 分别表示FBG1正向、反向的反 射和透射系数, r_2 为FBG2的正向反射系数。易得, FBG-FP腔反射光谱的上、下包络分别为

$$E_{\max}(\lambda) = \frac{(\sqrt{R_1} + \sqrt{R_2})^2}{(1 + \sqrt{R_1R_2})^2},$$

$$E_{\min}(\lambda) = \frac{(\sqrt{R_1} - \sqrt{R_2})^2}{(1 - \sqrt{R_1R_2})^2},$$
(16)

式中 $R_1 = |r_1|^2, R_2 = |r_2|^2$ 。

3.1 低反射率 FBG-FP 腔

对于两个低反射率 FBG 构成的 F-P 腔,为了便 于讨论,假设其零点带宽基本重合。由于多次反射 光强度成数量级递减,其反射谱通常近似为双光束 干涉^[6,15],反射复振幅可以表示为

$$r_{\rm FP} = r_1 + t'_1 t_1 r_2 \exp(j2\beta h).$$
 (17)

由耦合模理论,可得 FBG 正向、反向反射和透射相 位谱的关系为 $\phi_r = \phi'_r, \phi_t = \phi_r + \beta_0 L + \pi/2, \phi'_t = \phi'_r + \beta_0 L - \pi/2^{[16]}$ 。可得

$$R_{ ext{FP}} pprox R_1 + R_2 +$$

 $2\sqrt{R_1R_2}\cos(2\beta h + \phi_{r1} + \phi_{r2} + 2\beta_1L_1)$, (18) 根据(9)式,在零点带宽内,(18)式可表示为 $R_{FP} = R_1 + R_2 +$

 $2\sqrt{R_1R_2}\cos[\beta(2h+L_1+L_2)+(\beta_1L_1-\beta_2L_2)+\pi],$ (19)

式中 $\beta_1 = 2\pi n/\lambda_{B1}$, $\beta_2 = 2\pi n/\lambda_{B2}$, λ_{B1} 和 λ_{B2} 分别为两个 FBG的中心波长。在光谱相位中,第一项为波长变 化引入的相位,第二项为两个光栅不对称而引入的 固定相位差。此时, FBG-FP 腔与腔长为 $h+(L_1 + L_2)/2$ 的普通 F-P 腔的干涉条纹周期相同。因此, 从相位谱的角度分析,低反射率 FBG-FP 腔的等效 腔长为两个 FBG 中心间距。对于低反射率 FBG, 近似认为光在光栅中心完成反射和透射,这一结论 直观上易于理解,且与相关文献认为低反射率 FBG 构成的 F-P 腔长为两光栅同侧端面间距是一致 的^[6,15]。

3.2 高反射率 FBG-FP 腔

对于两个高反射率 FBG 构成的 F-P 腔,为了便 于讨论,考虑 FBG1 的零点带宽在 FBG2 的带宽内, 这与实际应用情况基本一致。FBG-FP 腔的透射谱 可以表示为

$$T_{\rm FP} = \frac{T_1 T_2}{1 + R_1 R_2 - 2 \sqrt{R_1 R_2} \cos(2\beta h + \phi'_{\rm rl} + \phi_{\rm r2})},$$
(20)

式中 $T_1 = |t_1|^2$, $T_2 = |t_2|^2$ 。光谱的相位为 $\varphi = 2\beta h + \phi'_{r1} + \phi_{r2}$. (21)

不失一般性,假设两个 FBG 的中心波长比较接近, 都在 FBG1 的零点带宽内,那么由(14)式可知,在 FBG1 的边带波长带宽内

$$\varphi = \beta \left[2h + \frac{\arctan(\kappa_{01}L_1)}{\kappa_{01}} + \frac{\arctan(\kappa_{02}L_2)}{\kappa_{02}} \right] - \phi_0,$$
(22)

式中 $\varphi_0 = \pi - \frac{2n}{\Delta n_1} \arctan(\kappa_{01}L_1) - \frac{2n}{\Delta n_2} \arctan(\kappa_{02}L_2)$ 为一固定相位差。可以看到,由于高反射率 FBG 的折射率调制深度增大,使得 FBG-FP 腔内的多 次反射只在较短的局域内进行,等效腔长变为 $h + \frac{1}{2} \left[\frac{\arctan(\kappa_{01}L_1)}{\kappa_{01}} + \frac{\arctan(\kappa_{02}L_2)}{\kappa_{02}} \right]$ 。本文着重对高 反射率 FBG 构成的非对称 F-P 腔的光谱进行实验 研究,在估计腔长的基础上,分析 FBG-FP 腔的等效 腔长。

3.3 腔长估计算法

FBG-FP 腔的光谱特性由 FBG 和腔中光纤决 定,要实现特定模式的光谱结构需要调整和控制腔 长。当 FBG-FP 腔被应用于动态应力传感时,多采 用精度较高的匹配干涉仪解调方法,为了实现高精 度和稳定的传感系统,减小解调干涉仪臂差与腔长 的匹配误差成为一个关键问题。因此,FBG-FP 腔 长的测量对于其光谱特性的分析和应用都有重要意 义。基于前述 FBG 和 FBG-FP 相位谱的分析,下面 讨论常用的 3 种腔长估计算法:拟合法、周期法和傅 里叶变换方法^[17]。

3.3.1 拟合法

拟合法通过调整参数利用理论谱线逼近实测谱 线,从而实现参数的求解。算法的关键在于代价函 数和搜索策略的选择。FBG-FP 腔光谱曲线有周期 性,通过改变腔长计算的理论谱线与实测谱线的差 值平方和也为周期变化的曲线,因此差值平方和形 式的代价函数存在过多极值,应用不理想。可以选 择两个谱线的互相关为代价函数,同时采用互相关 时延估计方法^[18],实现腔长与中心波长小位移两个 参数的求解,实验中效果较好。代价函数为

 $C(h_k) = \operatorname{cor}[R_{\operatorname{theory}}(h_k, \Delta \lambda_k), R_{\operatorname{target}}],$ (23) 式中 cor(•)表示求互相关函数, $R_{\operatorname{theory}}$ 和 $R_{\operatorname{target}}$ 分别 为理论谱线和实测谱线, h_k 为第 k 个搜索腔长(k =1,2,…, N), $\Delta \lambda_k$ 为由 h_k 计算的理论谱线与实测谱 线的 中 心 波 长 偏 移。遍 历 搜 索 腔 长, 代 价 函 数 $C(h_k)$ 的极大值对应于腔长估值。为了提高搜索效 率,可以采用模拟退火算法等最优化方法^[19]。

3.3.2 周期法

当波长增大 Δλ 时,(21)式中的相位变化为

$$\Delta \varphi = \frac{4\pi nh}{\lambda^2} \Delta \lambda + |\phi_{r1}(\lambda + \Delta \lambda) - \phi_{r1}(\lambda) + \phi_{r2}(\lambda + \Delta \lambda) - \phi_{r2}(\lambda)|.$$
(24)

为了便于讨论,考虑由一对相同低反射率 FBG 构成的 F-P 腔,相位变化表示为

$$\Delta \varphi = 2\pi \Big(\frac{2nh}{\lambda^2} + \frac{2}{\Delta \lambda_0} \Big) \Delta \lambda; \qquad (25)$$

谐振条纹周期为

$$T = 1 / \left(\frac{2nh}{\lambda^2} + \frac{2}{\Delta\lambda_0} \right); \qquad (26)$$

零点带宽内谐振条纹数目为

$$\frac{\Delta\lambda_0}{T} = \frac{2nh\,\Delta\lambda_0}{\lambda^2} + 2. \tag{27}$$

可以看到,由于 FBG 相位谱的影响使得在零点带宽 内 FBG-FP 腔比普通 F-P 腔多 2 个谐振条纹。如果 中心波长附近谐振条纹周期为 *p*, FBG-FP 腔长估 值可表示为

$$\overline{h} = \left(\frac{1}{p} - \frac{2}{\Delta\lambda}\right) \frac{\lambda_{\rm B}^2}{2n} = \frac{\lambda_{\rm B}^2}{2np} - L.$$
(28)

与上述分析类似,两中心波长相同的高反射率FBG-FP 腔长估值可表示为

$$\overline{h} = \frac{\lambda_{\rm B}^2}{2np} - \frac{1}{2} \left[\frac{\arctan(\kappa_{01}L_1)}{\kappa_{01}} + \frac{\arctan(\kappa_{02}L_2)}{\kappa_{02}} \right].$$
(29)

3.3.3 傅里叶变换方法

理论上傅里叶变换法与周期法是等价的,但是 由于数据处理的方法不同,估计精度有差别。在测 量 FBG-FP 腔的光谱时,可调谐激光器波长扫描精 度有限,测量系统不能拾取光谱谐振曲线的每个极 值,即由于采样精度有限,实测谱线与真实谱线有一 定差异。周期法主要利用谱线的余弦曲线形式对其 插值处理^[18],提高谐振条纹周期的估计精度。傅里 叶变换(FFT)的栅栏效应,提高频谱分辨率,进而提 高腔长估计精度。

4 实 验

FBG-FP 腔光谱测量系统如图 5 所示,可调谐激 光器(NetTest TUNIC-plus10)发出的光经过 3 dB 耦 合器,一部分进入屏蔽的参考干涉仪,由光电探测器 D1 和 D2 测量两端输出,用来监测和修正可调谐激 光器的幅度和频率波动;另一部分进入环形器,分别 由 D3 和 D4 测量 FBG-FP 腔的反射谱和透射谱。 通过 LabVIEW 软件控制可调谐激光器和数据采集

图 5 FBG-FP 腔光谱测量系统框图

Fig. 5 Spectral measurement system of an FBG-FP cavity

实验中选用两个高反射率 FBG,测量参数如下: L_1 =12.96 mm, L_2 =6.79 mm, Δn_1 =4.528×10⁻⁵, Δn_2 =1.842×10⁻⁴, λ_{B1} =1549.287 nm, λ_{B2} =1549.292 nm, R_{max1} =69%, R_{max2} =97%。采用熔接方式,构成一个约8 cm 长的 F-P 腔。FBG 采用相位掩模方式刻写,没有包层保护,在连接时腔长可操作距离较短,造成熔接损耗稍大。

由 D3 和 D4 分别测量得到的归一化反射和透 射谱如图 6 所示,可以看到反射和透射谱有较大差 异,这是由于腔内存在熔接损耗造成的。FBG-FP 腔光谱为多光束干涉叠加结果,对于反射谱,腔内损 耗相当于改变了 FBG2 的反射率,从而改变了从 FBG2 反射回的所有光束幅度;对于透射谱,每个干 涉光束都经过了腔内衰减,因此光谱结构没有变化, 只是幅度变小。

Fig. 6 Measured reflection and transmission spectra of the FBG-FP cavity

在分析了实测光谱数据之后,按图 7 所示流程 图进行处理。

1) 用参考干涉仪两端数据修正 FBG-FP 腔光 谱的强度和波长波动。

2) 由前述分析,利用 FBG-FP 腔反射谱和透射 谱差异计算腔内损耗,得出腔内损耗约 0.8 dB。

3) 实测透射谱线为高反射率 FBG2 的透射谱线 基准上形成的干涉条纹,对其低通滤波可得 FBG2 的

图 7 FBG-FP 光谱分析流程图

Fig. 7 Flow chart of the spectral analysis for the FBG-FP cavity

透射谱,与理论谱线匹配,可估计由可调谐激光器引入的实测 FBG-FP 腔谱线的固定波长偏差。

4) 引入腔内损耗参数,由两个 FBG 的参数计 算 FBG-FP 腔光谱包络,进而求出峰值反射率和透 射率。如图 8 所示, *R*_{FP}(λ)为修正后的 FBG-FP 腔 反射谱, *E*_{max}(λ)和 *E*_{min}(λ)分别为引入腔内损耗计 算的上、下包络, *R*_{FBG1}(λ)和 *R*_{FBG2}(λ)分别为两个 FBG 的实测曲线。

图 8 FBG 的反射谱、FBG-FP 腔反射谱及其包络对比图

Fig. 8 Comparison of reflection spectra of two FBGs and the constructed F-P cavity and the corresponding envelope curves

5) 由前述的 3 种腔长估计方法对 FBG-FP 腔 长进行计算。

由拟合法得到的腔长估值为 76.8 mm,实测与 理论计算的 FBG-FP 反射谱如图 9 所示。在零点带 宽内,两个谱线拟合得非常好。在旁瓣处拟合的幅度 有差异,但是谐振曲线变化趋势一致,这是由于实际 的 FBG2 左右两个旁瓣明显不对称(如图 8 所示),使 得理论公式计算谱线与 FBG2 实测谱线存在偏差,进 而造成拟合的 FBG-FP 腔反射谱的偏差。此外,由 (22)式可以计算得到等效腔长约为 83.15 mm,具有 相同腔长的普通 F-P 腔光谱的周期为 9.8 pm。由 于实验采用调谐精度为 1 pm 的可调谐激光器,根 据实测光谱得到的中心波长附近谐振条纹周期为 10 pm。在测量误差范围内,两个谐振条纹周期基 本相同,验证了(22)式关于非对称高反射率 FBG-FP 腔的等效腔长描述的正确性,也进一步证明了前 述 FBG 相位谱线性近似方法的合理性。

图 9 测量与拟合的 FBG-FP 腔的反射谱 Fig. 9 Measured and calculated reflection spectra of the FBG-FP cavity

由周期法估计的腔长如图 10 所示,图中取中心 波长处 12 个谐振条纹计算,谐振谱线极大值间隔计 算 结果平均值为76.79mm,谐振谱线极小值间隔

计算结果平均值为 77.13 mm。

图 10 周期法 F-P 腔长估计结果 Fig. 10 Estimated length of the FBG-FP cavity by the period method

对 FBG-FP 腔的光谱进行了 9 次测量, 腔长估 计结果如表 1 所示。其中 4 种方法分别为拟合方 法、采用谐振条纹极大值间隔的周期法、采用谐振条 纹极小值间隔的周期法和傅里叶变换方法。可以看 出, 拟合法估计的标准差最小, 精度较高, 傅里叶变 换方法次之。对于周期法, 由于实测光谱不能确保 得到每一个谐振条纹极值, 虽然通过插值算法可以 改善, 但是效果不明显, 使得估计方差较大。

	表 1 不同方法的 FBG-FP 腔长估计结果
Table 1	Estimated length of the FBG-FP cavity with various methods

	Table 1 Distinated length of the 1Do 11 cavity with various methods										
	1	2	3	4	5	6	7	8	9	Mean value	Standard deviation
Fitting method	76.44	76.8	76.75	77.43	76.14	76.64	76.6	77.06	77.82	76.85	0.51
Maximum interval	76.15	76.51	76.17	77.36	76.31	76.66	76.86	78.98	79.2	77.13	1.11
Minimum interval	75.53	76.38	75.95	77.37	76.94	75.6	76.07	78.13	78.61	76.73	1.05
Fourier method	76.38	76.72	77.04	78.22	77.14	76.35	76.91	78.25	78.71	77.3	0.82

5 结 论

对 FBG 和 FBG-FP 腔的相位谱进行了清晰直 观的定量描述。首先,对 FBG 相位谱进行了深入分 析,推导了低反射率 FBG 线性相位谱的一般表达 式;对于高反射率 FBG,提出了三段线性相位近似 方法,得到了简洁的相位谱数学表达式,数值仿真分 析对 R_{max}=90%的 FBG 反射相位谱拟合效果很好。 这为基于 FBG 相位谱的分析和传感等相关研究提 供了理论基础。然后,采用和普通 F-P 腔对比的方 式,以等效腔长的概念分析了 FBG-FP 腔的光谱特 性,得出低反射率腔的等效腔长为两光栅中心间距, 高反射率腔的等效腔长变短。讨论了拟合法、周期 法和傅里叶变换法这3种常用FBG-FP 腔长估计算 法。最后,考虑了光源强度和频率波动、腔内损耗和 波长偏移等因素,设计了FBG-FP 腔光谱测量方案, 通过误差修正得到了高精度的光谱曲线。经对比分 析,认为拟合法估计精度较高,傅里叶变换方法次 之,周期法相对较低,并且验证了关于非对称高反射 率 FBG-FP 腔等效腔长描述的正确性,也进一步证 明了 FBG 相位谱线性近似方法的合理性。FBG-FP 腔的光谱测量和处理方案具有较强的工程适用性, 为优化设计和传感应用提供了理论和实验基础。

参考文献

- 1 T. Erdogan. Fiber grating spectra[J]. J. Lightwave Technol., 1997, **15**(8): 1277~1294
- 2 A. D. Kersey, M. A. Davis, H. J. Patrick et al.. Fiber grating sensors[J]. J. Lightwave Technol., 1997, 15(8): 1442~1463
- 3 Liu Zhuolin, Zhang Weigang, Jiang Meng et al.. Configuration and development of fiber optical filter[J]. Chinese J. Lasers, 2009, 36(3): 540~546 刘卓琳,张伟刚,姜 萌等.光纤滤波器的原理、结构设计及其进

展[J]. 中国激光, 2009, **36**(3): 540~546

- 4 Wang Chunbao, Zhang Weigang, Liu Zhuolin *et al.*. Research on character of the cascade of fiber cavity and connection with fiber Bragg grating[J]. *Chinese J. Lasers*, 2010, **37**(6): 1485~1489 王春宝,张伟刚,刘卓琳等. 光纤微腔级联性质及布拉格光栅特 性研究[J]. 中国激光, 2010, **37**(6): 1485~1489
- 5 Rao Yunjiang. Recent progress in fiber optic extrinsic Fabry-Perot interferometric sensors [J]. Opt. Fiber Technol., 2006, 12(3); 227~237
- 6 Rao Yunjiang, Zhou Changxue, Ran Zengling et al.. SFDM/ WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg gratings [J]. Chinese J. Lasers, 2006, 33(5): 631~635

饶云江,周昌学,冉曾令等.啁啾光纤光栅法布里-珀罗传感器波 分频分复用[J]. 中国激光,2006,**33**(5):631~635

- 7 Lü Changgui, Cui Yiping, Wang Zhuyuan *et al.*. A study on the longitudinal mode behavior of Fabry-Perot cavity composed of fiber Bragg grating[J]. *Acta Physica Sinica*, 2004, **53**(1): 145~150 吕昌贵,崔一平,王著元等. 光纤布拉格光栅法布里-珀罗腔纵模 特性研究[J]. 物理学报, 2004, **53**(1): 145~150
- 8 C. Z. Shi, H. L. Ho, W. Jin *et al.*. Noise limit in heterodyne interferometer demodulator for FBG-based sensors [J]. J. Lightwave Technol., 2004, 22(10): 2287~2295
- 9 C. Caucheteur, K. Chah, F. Lhomme *et al.*. Characterization of twin Bragg grating for sensor application [C]. SPIE, 2004, 5459, 89~100
- 10 G. A. Cranch, G. M. H. Flockhart, C. K. Kirkendall. Efficient fiber Bragg grating and fiber Fabry-Perot sensor multiplexing scheme using a broadband pulsed mode-locked laser [J]. J. Lightwave Technol., 2005, 23(11): 3798~3806
- 11 Fan Fan, Zhao Jianlin, Wen Xixing et al.. Sensitivity analysis on

strain sensor based on Fabry-Perot interferometer with intensity interrogation[J]. *Chinese J. Lasers*, 2010, **37**(6): 1525~1531 樊 帆,赵建林,文喜星等. 强度解调型光纤光栅法布里-珀罗干涉仪的应变传感灵敏度分析[J]. 中国激光, 2010, **37**(6): 1525~1531

- 12 Yin Guolu, Lou Shuqin, Peng Wanjing et al.. Sensitivity of fiber Bragg grating-based Fabry-Perot interferometric sensor [J]. Chinese J. Lasers, 2010, 37(6): 1490~1495
 尹国路,娄淑琴,彭万敬等. 光纤布拉格光栅法布里-珀罗干涉式 传感器灵敏度[J]. 中国激光, 2010, 37(6): 1490~1495
- 13 Y. J. Rao, P. J. Henderson, D. A. Jackson *et al.*. Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system[J]. *Electron. Lett.*, 1997, **33**(24): 2063~2064
- 14 Li Wenbo, Zhou Wangmin, Wei Zhiwu *et al.*. Analysis of edge characteristics of grating and cavity of fiber grating-based Fabry-Perot cavity[J]. Acta Optica Sinica, 2009, **29**(9): 2355~2360 李文博,周王民,魏志武等. 光纤光栅法布里-珀罗腔的腔、栅边 缘特性研究[J]. 光学学报, 2009, **29**(9): 2355~2360
- 15 M. G. Shlyagin, P. L. Swart, S. V. Miridonov *et al.*. Static strain measurement with sub-micro-strain resolution and large dynamic range using a twin-Bragg-grating Fabry-Perot sensor[J]. *Opt. Eng.*, 2002, **41**(8): 1809~1814
- 16 Wang Yanhua, Liu Yan, Tan Zhongwei *et al.*. Modified Rouard method for fiber Bragg grating Fabry-Perot cavity [J]. *Acta Optica Sinica*, 2008, 28(5): 840~845
 王燕花,刘 艳,谭中伟等. 用于光纤布拉格光栅法布里-珀罗腔 的改进的 Rouard 算法[J]. 光学学报, 2008, 28(5): 840~845
- 17 Niu Siliang, Rao Wei, Ma Lina *et al.*. Study on cavity length measurement of fiber Bragg grating Fabry-Perot cavity [J]. Semiconductor Optoelectron., 2010, **31**(6): 945~948
 牛嗣亮,饶伟,马丽娜 等. 光纤 Bragg 光栅 F-P 腔长测量的理论 与实验研究[J]. 半导体光电, 2010, **31**(6): 945~948
- 18 Liu Li, Hui Junying. An improved three-point-insert time delay estimation algorithm[J]. *Appl. Acoust.*, 1999, 18(6): 34~38 刘 丽,惠俊英. 一种改进的三点内插时延估计算法[J]. 应用声学, 1999, 18(6): 34~38
- 19 P. Dong, J. Azana, A. G. Kirk. Synthesis of fiber Bragg grating parameters from reflectivity by means of a simulated annealing algorithm[J]. Opt. Commun., 2003, 228(4-6): 303~308